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Plankton-generated chaos in the modelled dynamics of

haddock

JOSEPH HORWOOD

Ministry of Agriculture, Fisheries & Food, Directorate of Fisheries Research, Fisheries Laboratory, Lowestofl,

Suffolk NR33 0HT, U.K.

SUMMARY

This study illustrates the feasibility of regimes of chaotic dynamics in gadoid populations. A previously
developed plankton model related fish larval survival to larval density and their copepod food supply.
This model is extended to a full-population model, incorporating age structure, fishing and a stock-
recruitment relation implicit in the plankton model. Parameterization is based upon the Georges’ Bank
haddock. It is shown that regions of stability, aperiodic and chaotic-like dynamics exist as both the
copepod food-supply and fishing rates are varied. The deterministic aperiodic dynamics are significantly
complicated by additional stochastic elements. The implications are that chaotic dynamics are plausible
and that analyses of output data on stock and recruitment can reveal relatively little; field and laboratory
studies are needed to elucidate the underlying mechanisms. Traditional fitting of stock and recrultment
relations may give an overly optimistic interpretation for fisheries managers.

1. INTRODUCTION

The problems of ‘stock and recruitment’ are the most
difficult, important and pressing in fisheries science
and management. They are difficult to address because
the knowledge needed embraces the totality of marine
ecology, and adequate synoptic sampling at sea is
expensive. They are important because they attempt to
explain and predict the short- and long-term dynamics
of fish populations, or stocks, and the maximum rates
of exploitation that the populations can sustain. They
are pressing because most of our major temperate-
water stocks are at historically low levels. The mature
biomass of many populations is less than 109, of
unexploited levels. Warnings have been given, and
major fisheries closed, because it is feared that
populations might be reduced to unsustainable levels
(Anon. 19944,d).

The problems of ‘stock and recruitment’ fall into
two related categories. The first seeks to explain the
variations in the numbers of juvenile fish that enter the
fisheries, termed the ‘recruitment’. This variation is
one of the main features of marine fisheries (Cushing
1975), with the variance of logged-recruitments in the
range 0.4-1.0 (Garrod 1983). For example, the North
Sea haddock has displayed a 100-fold difference
between recruitments in consecutive years (Anon.
19934).

The second problem is to describe and explain the
functional relation between the parent stock size and
the recruitment spawned by those parents (Cushing
1975; Rothschild 1986). Over a large range of stock
size the production of recruits is on average constant,
but very variable as described above. This implies an
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approximate density dependence of the form 1/z over
the range of stock size. But this cannot be sustained as
the stock size n becomes very small, and, if there are no
parents there will be no young: a line through the
origin is implied. This has lead to the construction of
largely empirically based functions to describe the
stock and recruit relation (e.g. Ricker 1954; Beverton
& Holt 1957; Cushing 1971; Shepherd 1982). It is an
injustice to assert that they are all only empirical, but
they are influenced by the need to have few parameters
to express the density dependence, given the paucity of
understanding of the mechanisms and the few and very
noisy data.

The stock and recruit relation is by far the most
important source of density dependence in the popula-
tions. The shape of the relation, specifically the slope of
the function at the origin, determines the maximum
rate of fishing that the population can sustain. All the
above functions provide visually adequate fits to most
data, and are statistically indistinguishable. To provide
better resolution, data from many stocks have been
considered together (Anon. 19934; Myers et al. 1994,
1995). These studies have indicated a reduced re-
cruitment at low stock sizes, but have had limited
success in elucidating the underlying structures. How-
ever, the functions are not guaranteed to give useful
information on the maximum rates of exploitation.
The Cushing power-curve, for example, has an infinite
slope at the origin. It can be appreciated that the
family of curves gives little insight into the behaviour of
the populations at low numbers, and that they cannot
readily be used for management. The position would
be different if stocks were allowed to collapse, and the
character of the stock-recruitment relation observed:
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Figure 1. The relation between haddock larvae at first
feeding (lo) and at metamorphosis (/m), m™, for initial
copepod densities of 5, 10, 20, 30 and 40 10° m™®. (Redrawn
from Cushing & Horwood 1994.)

as for in North Sea herring (Horwood 1982; Myers et
al. 1995). This is clearly not prudent, although current
management practice is giving us an opportunity to
observe too many stocks at low levels.

A different approach was adopted by Cushing &
Horwood (1994). They modelled the growth and
death of Georges’ Bank haddock (Melanogrammus
aeglefinus L.) based upon laboratory and field observ-
ations of the larvae. The model assumed that the larvae
grow with their cohort of copepod food. The mortality
rate is independent of density, but the duration over
which the pre-metamorphosis mortality operates varies
with the growth of the larvae, in a similar manner to
that modelled by Shepherd & Cushing (1980,1990). In
this model, the growth is dependent upon the density
of the copepods, which itself is determined by the
abundance of fish larvae. Two features of the model are
notable. First, with adequate food levels, the survival
rate of larvae is constant giving a constant slope at the
origin. Second, some food levels allow the larval cohort
to develop rapidly, but can then be inadequate to
sustain the increasing larval biomass, resulting in a
collapse. This is similar to the ‘scramble’ competition
familiar in entomology (Nicholson 1959; Varley et al.
1973). Both features have significant implications for
the dynamics of the population.

This study extends the Cushing & Horwood model,
of early larval growth, to a full population model of the
‘Georges’ Bank’ haddock. It is a caricature, based on
the population biology of the larvae and adult haddock
of Georges’” Bank, and is intended to illustrate the
spectrum of possible dynamic behaviour rather than
assert that this is the most appropriate model. The
dynamics are explored, and the limit cycle, aperiodic
and chaotic-like behaviours are illustrated.

2. MODEL DEVELOPMENT

The model developed by Cushing & Horwood (1994)
related the numbers of first-feeding larvae, of Georges’
Bank haddock, to the numbers at metamorphosis, one
to three months later, at different densities of copepod
nauplii. The resulting functional forms are illustrated
in figure 1, for initial densities of fish larvae of 0-30 m™®
and initial densities of copepods of 500040000 m2. It
is necessary to translate the numbers of larvae from m™®
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to numbers in the population, and to translate the axes
to numbers of recruits to the fishery and to the biomass
of the mature population. Later the model is ‘scaled’ to
an appropriate unexploited population size at an
initial copepod density of 15000 m™. This is higher
than the average copepod densities of 5-10000 m ™ but
the larvae tend to concentrate, in the water column, at
the highest prey densities (Lough & Potter 1993).
Table 1 gives the parameters used in the model.

The mature female biomass is assumed to spawn a
fixed number of eggs g, (f). The eggs and pre-feeding
larvae are subject to a planktonic mortality rate (M)
to give the numbers of first feeding larvae (lo) in the
population. This number is divided by the appropriate
water volume (V) of Georges’ Bank to give lo m™®. The
original model then returns the numbers of meta-
morphosing larvae (/m), which can be multiplied by
the same volume to give the numbers in the population.
A mortality from metamorphosis to age 1 is then
applied (M,). Let the functional relation be defined by
Im = h(lo|n), where n is density of the copepods.

The post-larval model has 14 age classes with a 15th
‘plus-group’. The proportion mature (pm,), mass (w,)
in kg, and selectivity to fishing (s;), at age ¢, are age
dependent, but otherwise constant. A constant in-
stantaneous natural mortality, M is assumed, and F is
the instantaneous rate of fishing mortality, which is
usually constant over time. The total instantaneous
mortality rate, Z,, is given by M +s,.F, and the annual
survival rate, §;, by exp(-Z; ). The fish spawn in March
and 209, of the natural and fishing mortality occurs
before spawning (Gabriel e al. 1989). The mass of fish
is that at spawning.

Define X; , as the number of haddock, in millions, of
age ¢, at the beginning of year ¢, and g(55B,) as the
recruits of age 1|, in millions, as a function of the
spawning stock biomass (males plus females), in
thousands of tonnes. The model can be expressed as:

Xy 1= g(SSB,)
KNy = X005, 1e(1,18)
X15,c+1= X14,c~S14+X15,c~S1as

SSB,= X, X, ,.pm;.w;.exp (—0.2Z,).

We need to develop g(SSB) in terms of lo and /m. The
density dependence will appear in the survival rate of
larvae. The result is to modify fish fecundity to an
eflective fecundity, and then the model can be
recognized as relatively standard.

The number of eggs produced by the mature female
biomass in year ¢ is, 1/2.SSB,f.10°. The eggs are
subject to a planktonic mortality (Me) during the
period of incubation (#) and between hatching and
first feeding (¢f); the survival rate over the period, Se,
is exp(-(ti+¢f).Me). Thus

lo, = 1/2.5SB,.£:10°.S¢/V, and Im, = h(lo,).

The metamorphosis of the gadoids is protracted.
Following Lawrence (1982), the Cushing & Horwood
model considered ‘metamorphosis’ at about 12 mm.
They are still in the plankton at 45-50 mm (Schmidt
1905; Russell 1976) before they take up a more
demersal phase in the later months of the year, as
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Table 1. Parameters used in the model and their dimensions if
not dimensionless

F instantaneous rate of fishing mortality mortality
at full selectivity (per year)

S number of eggs produced per gramme of female

g(SSB) the adult stock-recruitment relation (millions)

(lo|n)  the larval stock-recruitment function as number
of metamorphosing larvae given the density of
first feeding larvae and the density of prey
organisms n (m™?)

lo number of first feeding larvae (m™®)

im number of larvae at metamorphosis (m™2)

le number of first feeding larvae (m™®) — parameter
used in approximating the larval stock-
recruitment model

M instantaneous rate of adult natural mortality (per
year)

Me instantaneous rate of egg natural mortality (per
day)

Mj total natural mortality rate from metamorphosis
to age one

n the initial number of copepod prey (m™2)

pm, proportion mature at age ¢

SSB, biomass of the mature population in year ¢
(thousand tonnes)

Se proportion of eggs suriving to first feeding larvae

Sy proportion of metamorphosed larvae surviving to
age one

5; selectivity at age ¢

S, proportion of adults surviving annually

u incubation time of eggs (days)

if time from hatching to first feeding (days)

14 volume of water holding haddock larvae on
Georges’ Bank (m?)

w, mass at age ¢ (kg)

X, numbers of haddock age ¢ at the beginning of
year ¢ (millions)

Z, total instantaneous mortality rate on adult age ¢
(per year)

a parameter of the larval stock-recruitment model

£ parameter of the larval stock-recruitment model

b parameter of the larval stock-recruitment model

‘0-groups’. The post-metamorphosismortality rate (M)
is still high, and survival to age-1 recruits ($j), at the
beginning of year ¢+ 1, is given by .§j = exp(-M;), and
therefore,

X, 11 = h(10).V.Sj = h(1/2.8SB, f.10°.5¢/ V). V.5].

The shapes of the function £(lo|n), the survival
conditional on prey density n, can be seen in figure 1.
Over some initial density of /o the survival rate of
feeding larvae (S,) is constant. The shape is then
sensitive to the value of n. It has proved difficult to
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express the family of curves with a single relation
dependent upon /o and n. Consequently, a set of curves
was obtained that fit well to those constructed by
Cushing & Horwood (1994). For n=15000m®, a
single exponential and power function provided a
reasonable approximation (/m = a.lo.exp(-£.l0.”)). For
initial food levels of n = 10000 and 15000 m™3, this
function was used only after a larval density /. At
lower densities a constant survival rate, .S, was used.
For higher food levels, even this function was in-
adequate to represent A(lo|n) and, above [, the
function {m = -(a—f.00.7)"" was used. The parameters
for the six curves are given table 2.

3. MODEL PARAMETERS AND SCALING

This completes the model, but the values of the
parameters have to be obtained, and they are given in
table 3. The adult age-specific parameters (pm, wm, )
and the natural mortality rate (M) were taken from
Gabriel et al. (1989), and they are consistent with the
later assessment by Gavaris & Eeckhaute (1994). The
value of the specific fecundity (f), of 500 eggs g™", is
from North Sea haddock (Hislop 1988).

The incubation time of the eggs is temperature
dependent, and spawning in waters of about 7 °C gives
an incubation time (%) of 14 days (Russell 1976). The
time to first feeding (¢f) is two days (Lawrence 1974).
The mortality rate of fish eggs and larvae was reviewed
by Bailey & Houde (1989), and the 70 %, daily survival
for haddock eggs implies a mortality rate (Me) of
0.35 day ™.

The remaining parameters are the volume of water
inhabited by the population of haddock larvae on
Georges’ Bank (V) and the 0-group mortality (M;). For
V, a value of 2.33.10'° has been used, which is
consistent with the size of Georges Bank. For M, a
value of 1.945 has been used, which is similar to the
0-group mortality estimated for North Sea haddock
(Anon. 1993). Although appropriate, the values were
actually obtained so as to scale the model to give results
consistent with the observed sizes of adult and larval
populations. Hence, any imprecision in the above
larval mortality rates and fecundity is not important.

The haddock recruitment is very variable but over
the past 50 years the average recruitment, at age 1, has
been about 50.10° (Gabriel e al. 1989). The adult
model gives an unexploited spawning stock biomass
per recruit (SSB/X;) of 10.17 kg per recruit, and hence
an unexploited spawning biomass of about 500 kt. The
values for V and M, were set, for a larval food level ()
of 15000 m™, such that the unexploited SSB gave a

Table 2. Values of the parameters for the functions approximating h(lo|n) for various food levels (n) in 1000 m™

food level L, S, a B v
n

5 n/a n/a 0.04283 0.64349  0.61891
10 2.43889  0.0453518 253.099 7.35869  0.17837
15 4.26051  0.0453518 3.187.10M 26.19 0.0840
20 6.69215  0.0453518 135.7 88.8 0.2357
30 10.2982 0.0453518 102.335 34.543 0.4746
40 13.88020.  0.0453518 326.56 173.67 0.2419

Phil. Trans. R. Soc. Lond. B (1995)
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Table 3. Parameter values for the model

age 1 2 3 4 5 6

8 9 10 11 12 13 14 15+

pm 0.00 0.30 0.81 091 098 0.98
w 0.098 049 1.11 1.79 243 2.79

0.99 099 1.0 1.0 1.0 1.0 1.0 1.0
3.76 4.02 421 436 446 454 460 4.64
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

5 0.06 050 0.90 1.0 1.0 1.0
N2 500
fi 14
if 2
M 0.2
Me 0.35
Mj 1.945
14 2.3336.10%°
800 -
(a)
600 |
=
[}
E 400
5 *
S
g
200 |
*
.03’0’.“
0 onceh. 0" k3 ot
2500
®)
2000
£ 15001
£
£ 10001
8
5001
0 100 200 300 400 500 600

SSB
Figure 2. The relation between recruitment (107%), at age 1,
and spawning stock biomass (SSB) in kt of Georges Bank
haddock, derived from the model. (a) gives the data points
and the curves for initial copepod densities of 10 and 15 10®
m?; and (b) gives the curves for densities of 5, 10, 15, 20, 30
and 40 10° m™®.

density of first feeding larvae (lo) of 20 m™, giving a
density of metamorphosing larvae (/m) of 0.015 m™3.
Hence, V' = 50.10°/(0.015.57). The only flexibility this
has given is to choose, within limits, the equilibrium
density of the first feeding larvae in the unexploited
stock.

Figure 2a shows the resulting stock and recruitment
curve for initial copepod densities of 10 and 15 10* m™,
and the data points from Gabriel et al. (1989). The
points are typically below the lines. Within the context
of the model, this suggests that copepod densities may
be generally lower than 15 10® m™ or that the
unobserved and unexploited stock may have had
recruitments lower than the assumed 50000000. Figure
2b shows the stock and recruitment curves for the

Phil. Trans. R. Soc. Lond. B (1995)

initial copepod densities of 5, 10, 15, 20, 30 and 40 10®
-3
m

4. THE STATIC EQUILIBRIUM

The above equations can be solved to give the static
equilibrium spawning stock biomass, as the fishing
mortality rate is increased, for each of the copepod food
densities. The results are shown in figure 3. For the
copepod density of 15000 m™?, the unexploited spawn-
ing biomass is 500 kt, as designed. For the other
densities, the unexploited biomass ranges from
500-600 kt depending upon the details of the function
h(lo).

The behaviour of the equilibrium at high fishing
rates could be anticipated. Fishing occurs before the
onset of maturity and first spawning. This alone will
reduce the spawning biomass to low levels and
combined with a normal density dependent function is
likely to lead to extinction at some finite fishing rate.
It can also be anticipated that the choice to fit
a continuous curve to the plankton model, for
n = 5000 m~?, allows the trajectory to extinction to be
smooth. Conversely, the use of a constant survival rate,
below a threshold larval density, means that extinction
will occur abruptly. These behaviours can be recog-
nized in figure 3. For n = 5000 m~®, the spawning
biomass is smoothly reduced to zero at about
F = 2.1y, whereas for the other models, with higher
copepod densities, the reduction is abrupt at a similar
value of about F = 2.65 y™'.

800

Q
&% 400

Figure 3. The static equilibrium spawning stock biomass
(SSB) in kt, against the instantaneous fishing mortality rate
(F), for the models with the six initial copepod densities.
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Although extinction occurs at the same level of
fishing mortality, it occurs at different levels of
spawning stock biomass. From about the same un-
exploited levels, the model predicts much higher spaw-
ning biomasses when copepod densities are high. The
equilibrium behaviour indicates that, as fishing in-
creases, there is an initial rapid decrease in the spawning
biomass. With further increases in fishing mortality the
biomass declines only slowly, as the decrease in biomass
by fishing is almost compensated for by increased
recruitments. The traditional picture from yield per
recruit plots (Beverton & Holt 1957) generally suggest
a low optimal fishing rate, and for the Georges Bank
haddock Fy, is 0.26 y* (Gabriel et al. 1989). The
current model predicts that yields will increase rapidly
as the fishing rate increases to critical levels. With the
spawning biomass stable and recruitment and vyields
increasing, the collapse is sudden and unexpected.

1.50E+08 7 (a)
g e,
[} +
£ 1.00E+08{ . .,
5 ' T
8 + ++
5.00E+07 .
+4—
.
§+‘
4.00E+08 1
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g ar?
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= : i i'l
£ 5.00E+08 | :
= + t
s | *
2.50B+08 a1 I
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+ + + ‘:
z Ifﬁ’* Ty i %i; !
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¢++++;:*i;; * *
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Phil. Trans. R. Soc. Lond. B (1995)

Haddock in chaos?  J. Horwood 113

However an examination of the dynamics is required
to give the full picture, especially the time over which
the collapse can be observed.

5. BIFURCATION PLOTS

The shape of the stock and recruitment relations
imply that chaotic or limit cycle dynamics might exist.
In fact, some of the earliest observations of such
dynamic behaviour were noted by fisheries dynamicists
(Ricker 1954; Beverton & Holt 1957). However, the
model is of a multi-cohort nature, and it is easily possible
for the biomass in the cohorts to dampen and dispel
potential cyclic behaviour. On the other hand, the age-
structure per se introduces an increased time delay into
the system which is intrinsically destabilizing. Whether
the stability of increased age classes outweighs the
effects of the time-delays depends on the precise

LOOE+9 1 () s+
+ + $
E +: +*i % *Izi +¥
2 120E+9 i* ++:§+:I* i
‘é’ . i + ; * + i T
] t,ig¥
£ 8.00E+8 SR 3 i
' P fiigl it
4.00E+8 + e ;EL
+5 7 + i +FFt
+ +++ +i *$it
000E+0 1 $bpes@éWN+ " % : :
2.50E+409 1
= 20084091 L% ., 1 ; i *EEEI% !
O + + E 3
g . L
T O150E+091 . 3.
8 + N + o+
= + + + +
1.00E+09 . g 1t
+ + 4
t+ 4 % $
500B+08{ 4 " %u I~§ %
! + i
STITPETTI Ihd 151 110 , ,
0 05 10 15 20 25 30

Figure 4. The plots of dynamic equilibria of haddock
recruitment (bifurcation diagrams) as the fishing mortality
rate, F, is varied for the initial densities of copepods (n): (a)
n=>5000m™3; (b) n=10000m™3; (¢) n= 15000 m~3; (d)
n=20000 m™3; (¢) n=30000 m™3; and (f) n = 40000 m™3.
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character of the model (e.g. May ¢t al. 1978; Levin
1981; Nisbet & Gurney 1982; Bergh & Getz 1988). In
practice, the stock and recruitment models estimated
for fisheries generally do not give rise to cyclic or
aperiodic behaviour at reasonable fishing mortality
rates.

However, n-point limit cycles and chaotic-like
behaviour is a feature of this deterministic model. The
dynamic models were run for 1500 years, for the range
of fixed fishing mortality rates and started from near to
their equilibrium. The last 100 years of recruitments
(X, ,) were obtained. Figures 4a—f show the resulting
bifurcation diagrams plotted against F.

Figure 4a gives the results for n = 5000 m™®. The
maximum value for F'is as described above. There is a
single stable equilibrium solution for all F below the
maximum, and recruitment declines smoothly to zero
at the maximum F. Figure 44 gives the results for n =
10000 m™. There is also a single stable equilibrium
solution for all F below the maximum, but the
recruitment increases until the maximum F.

Figure 4¢ gives the results for n = 15000 m™® and a
change in the character of the results occurred. There
is a single, stable equilibrium for values of F < 1.1 y™™.
At higher values a complex pattern is seen. For most
values of F there are no repeated points in the 100
examined, and the system appears chaotic. There are
intervals where periodicity returns. At about F=
1.5 y™* six-point cycles can be seen, with the points
occurring in pairs. At = 2.05 y ™' there is an eleven-
point cycle. The transitions from chaos to periodic
behaviour and back are frequently encountered in
highly non-linear systems (e.g. Bolker & Grenfell
1993). The shape of the plot shows the range of the
recruitments encountered. Initially the recruitments
steadily increase. As the single equilibrium disappears,
the trajectory covers lower recruitments than the last
stable equilibrium recruitment, and a maximum
recruitment. The maximum recruitment is near the
peak of the stock-recruitment curve seen in figure 2. As
F increases, the values of recruitment become more
restricted to the top of the stock-recruitment curve.
The points are mainly on the descending right limb of
the curve, only occasionally visiting the top of the
linear section of the curve.

A similar behaviour is seen for » = 20000 m™ (see
figure 4¢). The bifurcations start at a lower value of
of about 0.6 y™*. Periodic behaviour is most common
for F less than about 1.5 y*. Cycles of 7, 8, 13 and 15
years can be seen, with the occasional aperiodic region.
For higher values of F, the system is generally
aperiodic, but there can be considerable pattern to the
recruitments encountered. Similar-sized recruitments
can be regularly visited. The lower bound of the
recruitments is lower than before, and the linear
section of the stock-recruitment curve is more regularly
visited.

Figures 4d and 4e give the results for n = 30000 and
40000 m™3, respectively. A similar behaviour to that
described for n = 15000 m™ is seen. The bifurcations
occur at lower values of F, the patterns of periodic and
aperiodic behaviour are similar, and a fuller range of
recruitments are encountered.

3
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Figure 5. The three dimensional 500-year trajectory of age
classes 1 (scale 0-10°), 3 (scale 0~4.10%) and 5 (scale 0-4.107)

for the deterministic model of a prey density of 20000 m™
with a fishing mortality of ¥ = 0.936 y™', comparable with

the results for age-class 1 of figure 4d.

The above is by no means a full description of the
dynamic properties of the model, which has not been
attempted in this study. The requirements for a more
complete non-linear deterministic (e.g. Levin &
Goodyear 1980; Guckenheimer & Holmes 1990) and
stochastic (e.g. Engbert & Drepper 1994) analysis are
demanding. It at least requires the expression of
recruitment as an appropriate single function of prey
density () ; this alone has proved difficult and separate
functions have been used in this study. The details
given in here should enable anyone to carry forward
such analyses but if not the author can be contacted for
assistance. Figure 5 suggests the complexity to be
encountered. It is a plot of the three dimensional
trajectory of age classes 1, 3 and 5 for 500 years, after
an initial 1500 years, from one starting position. It is
for the deterministic model of a prey density of
20000 m™ with a fishing mortality of F = 0.936 y™*,
comparable with the results for age-class 1 of figure 44d.
As anticipated there is a richness of the dynamics and
an indication of quasiperiodic behaviour and pre-
cession. Analyses of similarly structured models have
been reported by Guckenheimer et al. (1977), Levin &
Goodyear (1980) and Wikan & Mjelhus (1995).

6. A DYNAMIC REALIZATION

As an illustration of the temporal dynamics that
would be apparent in such a model world, a single
stochastic simulation was carried out. The current
fishing mortality on the Georges’ Bank haddock is about
unity and has risen over the past two decades (Gavaris
& Eeckhaute 1994). The model was run for 50 years,
starting at F = 0.2 y!, and increasing it exponentially
so as to be at F=1.0y™" after 50 years; an ap-
proximation to the exploitation of the Georges Bank
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Figure 6. A stochastic realization of: recruitment (107%)
denoted by filled squares; mature population size (kt)
denoted by open triangles; and yield (kt) denoted by filled
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Figure 7. The resulting plot of recruitment (107%) against
spawning stock biomass (kt) for the time series of figure 5.

haddock from 1945 to the present day. The model was
started from equilibrium with the copepod density of
15000 m™~. A copepod food level was chosen at random
each year, with 0.4 probability of it being 15000, a 0.2
probability of it being either 10 or 20000, and a 0.1
probability of it being 5 or 40000. Figure 6 shows the
outcome of this single trial.

The system is well behaved for the first 25 years.
Fishing is slowly increasing to reduce the spawning
stock biomass and recruitments and yield are relatively
stable or increasing. At years 28 and 29, the copepods
are at high level of 40000 m™, and two high
recruitments result, sending up the biomass and
subsequent yields. A further high recruitment is seen in
year 37, but this is due to the peak of the stock-
recruitment curve being attained under normal food
conditions. At year 46, another high recruitment
occurred with a high copepod density. The large
increase in recruitments has an important impact on
the stock, returning it to levels of low recruitment and
setting up a cyclic behaviour.

Such a system would be manageable if the under-
lying dynamics could be ascertained from the outputs.
Figure 7 shows the plots of recruitment against
spawning stock biomass. It has all the features of real
fisheries data. There is great variability and little
structure. We may see an increased variability at
intermediate stock sizes, and we may see reduced
recruitments at the lowest stock sizes. The data allow
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little insight into the dynamics, except the important
point that at least at the observed levels the stock has
been maintained.

7. DISCUSSION

Various methods have been proposed to identify
chaotic dynamics from output data (Blythe & Stokes
1988; Sugihara & May 1990; Casdagli 1992). How-
ever, even with long time series, the ability to
distinguish between chaotic and stochastic forces in
biological populations and diseases is inadequate
(Casdagli 1992; Godfray & Grenfell 1993). There are
indices and records of catches of marine fishes for
periods of a few hundreds of years (Wyatt & Larraneta
1988), but the insights they give into the abundance of
the populations tend to be unrefined. In many cases
the catches fluctuate because of changes in fishing
effort and market forces. The information from scale
deposits (Soutar & Isaacs 1974) lacks the required
temporal resolution. In any case, the population is a
compound unit comprised of many age classes.
Detailed data from stock assessments rarely provides as
much as 50 years of data on the strength of year-classes.
It is therefore almost impossible to distinguish between
chaotic dynamics or stochastic events or some com-
bination as being the driving mechanism for the highly
variable time-series of recruitments. Furthermore, the
interactions between stochasticity and chaotic dy-
namics can be the dominant factor in the dynamics in
some systems (Rand & Wilson 1991; Engbert &
Drepper 1994).

From the observations of stock and recruitment we
cannot conclude one way or the other whether chaotic
dynamics are involved. Shepherd & Cushing (1990)
argued that single-species deterministic chaos was
unlikely as the underlying shape of the density
dependence would still be exposed in the stock-
recruitment plots. That may be true if only
deterministic dynamics were involved, but the in-
troduction of some stochastic elements into the above
model shows that the underlying structure is quickly
hidden (see figure 7). Even if it were not affected by
random events the underlying model might easily be
unrecognized, as described below.

The lack of ability to determine the existence of
chaos allows prejudice to take a part. Along with
Berryman & Millstein (1989), I considered that chaotic
dynamics were unlikely to be at all general in
population dynamics because of the difficulty, at the
population and evolutionary levels, of coping with the
variability. However, counter arguments are many
(e.g. Nisbet et al. 1989), and this prejudice was
particularly weakened by the studies of Allen et al.
(1993) who showed that ensembles of populations
could be less prone to extinction under chaotic
conditions. With little empirical basis to recognize the
dynamic mechanisms from the data one has to look to
the mechanisms to predict the dynamics. This is very
difficult in the case of marine fisheries and the Cushing
& Horwood (1994) model was one approach.

The above demonstration of chaotic-like dynamics is
only as valid as the model. But the model cannot be
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regarded as exceptional. It has parallels in entomology
with the recognition of ‘scramble’ competition. The
model essentially says that circumstances can exist that
allow the build up of large biomasses of a predator, but
too favourable conditions will then cause this biomass
to wipe out its prey and cause a collapse of the
predator. The fortunes of prey and predator are closely
linked. In northern waters we do see the development
of recognizable cohorts of copepods over scales of
50-100 km, and these cohorts can persist for months
(Cushing & Tungate 1963; Horwood & Cushing
1978). Fish larvae exist at similar scales (Lough & Bolz
1989). The distribution is such that fish larvae must
take advantage of the patches or starve. In areas such
as the northern North Sea or Georges’ Bank there is
only space for a limited number of such patches, and
little option to switch between patches. The model
extends the behaviour of the larvae observed in the
laboratory to provide a plausible reality. Nevertheless,
a weakness with the model is the lack of spatial
structure. The number of patches of copepods may be
finite, but recent studies have revealed that some
stability can be regained with migration and dispersal
amongst patches (Stone 1993; Ruxton 1994).
McCallum (1992) has also shown that immigration or
refuges can have a stabilizing effect on populations
subject to scramble competition, and most of the large
populations of marine fish might better be described as
metapopulations.

A chaotic dynamics of fish populations was
postulated by Wilson et al. (1991). Here there was a
community dynamics, but essentially the concept is
similar to that described for the single species. There is
a build up of biomass that cannot be sustained and
predator and prey collapse. The deterministic chaotic
dynamics of a model of the Hudson River striped bass
was investigated by Levin & Goodyear (1980). They
show that a region of chaotic dynamics exists for at
least high values of fish recruits per parent and high
exploitation rates, but it is not clear whether such
parmeter values are encountered.

The greatest annual variability in fish recruitment is
seen in the gadoid stocks. These occur in the northern
waters, rich in calanoid copepods and euphausids and
where single species of larval prey predominate. In
more coastal areas, such as the Southern Bight of the
North Sea or the Bristol Channel, the zooplankton are
smaller, more diverse and with smaller variations in
time and space. The flatfish are common in these areas
and, although an occasional abundant year-class is
seen, the recruitments are much less variable (Garrod
1983 ; Horwood 1993). This is supportive of the general
applicability of the Cushing & Horwood model.

A major natural phenomenon has been the ‘gadoid
outburst’ in the North Sea. From about 1962, all the
gadoid stocks had increased recruitments and probably
increased variability. The size of the stocks increased
enormously: cod numbers increased threefold. A short
time later the pelagic stocks, especially the herring,
declined. The reasons have not been resolved and they
are unlikely to be simple. They include a greater
production of Calanus (at a later time of the year), and
a decrease in Pseudocalanus (food released for the
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gadoids by over-fishing of the herring) after the initial
increased recruitments; and changes in the energy
pathways favourable to the gadoids and unfavourable
to the herring (Anderson & Ursin 1977; Hempel 1978;
Cushing 1984). The above model suggests another
linkage. The extra availability of calanoids is described
by Cushing (1984). At intermediate stock sizes, the
model suggests greatly increased and more variable
recruitments, consistent with the gadoid story. At
higher food levels the larval biomass can become great
and can easily remove the copepod population. At
lower food levels, the interaction between fish and
copepod is more balanced. At lower food levels the
copepods survive and at higher food levels their
existence is more precarious. The adult herring will
feed upon the copepodite and adult stages of Calanus, as
well as Pseudocalanus, and their subsequent cohorts.
Consequently, the food available to the adult herring
may have been more erratic and precarious. The
decline of the herring was predominantly caused by
over-fishing, but this decline may have been
accelerated, and maintained at a low level, by adverse
feeding of the adults, and subsequent abundance and
fitness of their eggs, larvae and recruitment. The recent
reversal in the fortunes of the gadoids is consistent with
the current increase in herring, which was started by
improved recruitments, and a lower level of Calanus is
implied. Corten (1990) argued that a simple stock-
recruit relation was not the explanation for the increase
in the herring, but this more complex path, driven by
the gadoid stock-recruit-copepod relation could be.
There is still an immense gap between the specu-
lation of the model and observations in the sea. The
problem is obviously one of fisheries but it is also an
opportunity for marine life-science. The population
dynamics of the marine ecosystem are very poorly
understood, for reasons of logistics and expense. The
massive fluctuation in gadoid recruitments offers a
focus to explain a major event and to learn how the
middle trophic layers work in the sea. Until we can
conduct series of observations, at time and space scales
appropriate to copepods and fish larvae (Steele 1978;
Levin 1992) we will make no progress in this area.
Fisheries managers need advice on the size of fish
stocks and potential yields. Recently they have needed
to know how low stocks can be driven before they
collapse. In waters around the U.K., The Internation
Council for Exploration of the Sea (ICES) determined
that more than half of the populations of commercial
finfish are near or below safe levels. One approach has
been to fit stock and recruit relations to the data. The
models are simple, for with few points a highly
parameterized model is not credible. The variation
about the simple model is treated as ‘noise’. It can be
appreciated from figure 7 how misleading such an
exercise can be. It not only misrepresents the situation
to managers it misrepresents the biology of the fish. At
present, the only suitable statistic to characterize the
maximum fishing rate would appear to be ‘F-high’
(Anon. 1983; Sissenwine & Shepherd 1987; Jakobsen
1993). This is obtained by drawing a line through the
origin of figure 7, leaving 10 %, of the points to the left.
From this line a ‘maximum’ fishing rate can obtained.
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Even with the above model, this would return a
reasonable estimate of the maximum rate of fishing
that the stock could withstand.

Finally, this is a caricature of the Georges’ Bank
haddock. Its use is to demonstrate the potential
existence of chaotic-like dynamics rather than to assert
a specific mechanism and its presence. But progress to
seeking the mechanisms can only be made with more
sampling in the sea.

I am particularly grateful to David Cushing and Kevin
Stokes for their helpful comments. Mike Nicholson and
Lynne Howell explored statistical fits to the plankton model.
Simon Levin and one unknown referee gave useful guidance
and references.
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